un 2 00 5 1 - rigidity of CR submanifolds in spheres

نویسنده

  • Sung Ho Wang
چکیده

In the study of submanifolds in a homogeneous space X = G/P of a Lie group G, the method of moving frames is both a unifying concept and an effective tool, which is the version of the method of equivalence applied to submanifold geometry. Let φ be the left invariant, Lie algebra g-valued Maurer-Cartan form of G. The local equivalence problem for a submanifold f : M →֒ X is solved on a canonical adapted subbundle Ef : Bf →֒ G together with π = E f φ in such a way that the complete set of local invariants is generated by the coefficients of π [Ga]. The pair (Bf , π) measures in a sense how the submanifold M deviates from a flat model submanifold. The method was systematically exploited and applied by Cartan himself and by Chern in various geometric problems, [Ch] and the references therein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1-rigidity of CR submanifolds in spheres

We propose a unified computational framework for the problem of deformation and rigidity of submanifolds in a homogeneous space under geometric constraint. A notion of 1-rigidity of a submanifold under admissible deformations is introduced. It means every admissible deformation of the submanifold osculates a one parameter family of motions up to 1st order. We implement this idea to the question...

متن کامل

Classification Results for Biharmonic Submanifolds in Spheres

We classify biharmonic submanifolds with certain geometric properties in Euclidean spheres. For codimension 1, we determine the biharmonic hypersurfaces with at most two distinct principal curvatures and the conformally flat biharmonic hypersurfaces. We obtain some rigidity results for pseudo-umbilical biharmonic submanifolds of codimension 2 and for biharmonic surfaces with parallel mean curva...

متن کامل

A Ddvv Inequality for Submanifolds of Warped Products

We prove a DDVV inequality for submanifolds of warped products of the form I ×a Mn(c) where I is an interval and Mn(c) a real space form of curvature c . As an application, we give a rigidity result for submanifolds of R×eλt Hn(c). RÉSUMÉ. Une inégalité de type DDVV pour les sous-variétés des produits tordus. Nous donnons une inégalité de type DDVV pour les sous-variétés des produits tordus de ...

متن کامل

Rigidity Properties of Mappings between Cr-submanifolds in Complex Space

We survey some recent results on holomorphic or formal mappings sending real submanifolds into each other in complex space.

متن کامل

Contact CR Submanifolds of maximal Contact CR dimension of Sasakian Space Form

In this paper, we investigate contact CR submanifolds of contact CR dimension in Sasakian space form and introduce the general structure of these submanifolds and then studying structures of this submanifols with the condition  h(FX,Y)+h(X,FY)=g(FX,Y)zeta, for the normal vector field zeta, which is nonzero, and we classify these submanifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005